STATE OF OKLAHOMA DEPARTMENT OF TRANSPORTATION GEOTECHNICAL SPECIFICATIONS FOR ROADWAY DESIGN June 29, 2011 # APPENDIX 2. - GUIDELINES FOR ANALYSIS, BORING, SAMPLING, AND TESTING **Purposes:** These guidelines provide the basic criteria for: - (1) Geotechnical engineering analysis for roadway embankments and retaining walls - (2) Boring, sampling and testing These guidelines are intended to provide, to the Geotechnical Engineer, a minimum approach to providing geotechnical information based upon the various soil types encountered at the project location. The Geotechnical Engineer is not limited to these guidelines if site conditions warrant the need for further sampling, testing, and/or analysis. TABLE 1: GEOTECHNICAL ENGINEERING ANALYSIS REQUIRED FOR EMBANKMENTS, AND RETAINING WALLS | Soil Classification | | | Embankment ar | nd Cut Slopes | Retaining Walls Conventional, Crib & Reinforced Soil | | |---------------------|------------------|----------------------------|--|---|---|---| | Unified | AASHTO(1) | Soil Type | Slope Stability(2)
Analysis | Embankment
Settlement Analysis | Lateral Earth Pressure | Stability Analysis | | GW | A-1-a | | Stability analysis
generally not required if
cut or fill slope is 1-1/2 | Settlement analysis
generally not required
except possibly for SC | GW, SP, SW, & SP soils
generally suitable for
backfill behind or in
retaining or reinforced
soil walls. GM, GC, SM, & | All walls should be designed to provide minimum F.S. =2 against overturning | | GP | A-1-a | Gravel
poorly
graded | cut slope is drawn down
by underdrains. Erosion
of slopes may be a
problem for SW or SM
soils. | | SC soils generally suitable if have less than 15% fines. Lateral earth pressure analysis required using soil angle | =1.5 against sliding along base. External slope stability considerations same as previously given for | | GM | A-1-b | Gravel
silty | | | of internal friction. | cut slopes and embankments. | | GC | A-2-6
A-2-7 | Gravel
clayey | | | | | | SW | A-1-b | Sand
well
graded | | | | | | SP | A-3 | Sand
poorly
graded | | | | | | SM | A-2-4
A-2-5 | Sand
silty | | | | | | sc | A-2-6
A-2-7 | Sand
clayey | | | | | | ML | A-4 | | Stability analysis required unless non-plastic Erosions of slopes may be | Settlement analysis
required unless non-
plastic | These soils are not recommended for use directly behind or in retaining or reinforced soil walls. | | | | | Sunay | a problem. | | | | | CL | A-6
Lean Clay | Clay
in-
organic | Required | Required | | | | OL | A-4 | Silt | Required | Required | | | TABLE 1: GEOTECHNICAL ENGINEERING ANALYSIS REQUIRED FOR EMBANKMENTS, AND RETAINING WALLS | Soil Classification | | | Embankment and Cut Slopes | | Retaining Walls Conventional, Crib & Reinforced Soil | | |---------------------|-----------|-------------------------------------|--|--|---|---| | Unified | AASHTO(1) | Soil Type | Slope Stability(2)
Analysis | Embankment
Settlement Analysis | Lateral Earth Pressure | Stability Analysis | | МН | A-5 | Silt
inorganic | Stability Analysis required
Erosion of Slopes may be
a problem | Required | These soils are not recommended for use directly behind or in retaining walls. | All walls should be designed to provide minimum F.S. =2 against overturning and minimum F.S. =1.5 against sliding along base. External slope stability considerations same as previously given for cut slopes and embankments | | СН | A-7 | Clay
inorganic
"fat
clays" | · | Required | | | | ОН | A-7 | Clay
organic | Required | Required | | | | PT | | PEAT | Required | Required | | | | | | | | Long-term settlement can be significant. | | | | Rock | | | Fills-Analysis not required
for slopes 1-1/2
Horizontal to 1 Vertical or
Flatter. | · | Lateral earth pressure
analysis required using
rock backfill angle of
internal friction. | | | | | | Cuts-Analysis required but depends on spacing, orientation, and strength of discontinuities, durability of the rock. | | | | # REMARKS: Soils -Temporary ground water control may be needed for foundation excavation in GW through SM soils. Rock - Durability of shales (silt-stones, clay-stones, mud-stones, etc.) to be used in fills, should be checked. Non-durab Rock - Durability of shales (silt-stones, clay-stones, mud-stones, etc.) to be used in fills, should be checked. Non-durable shales should be embanked as soils, i.e., placed in maximum 12" looses & compacted with heavy sheepsfoot or grid rollers. - (1) Approximate correlation to United (Unified Soil Classification system is preferred for geotechnical engineering usage AASHTO system was developed for rating pavement subgrades). - (2) These are general guidelines detailed slope stability analysis may not be required where past experience in area in similar soils or rock gives required slope angles. # TABLE 2: GUIDELINE "MINIMUM" BORING, SAMPLING AND TESTING CRITERIA #### Sand-Gravel Soils #### **Silty-Clay Soils** **SPT** (split-spoon) samples should be taken at 5-foot (2m) intervals (2m) Intervals or at significant changes in soil strata. **SPT** and "undisturbed" thin wall tube samples should be taken at 5 foot (2m) intervals or at significant changes in strata. Take alternate **SPT** and thin wall tube samples in the same boring or take thin wall tube samples in a separate undisturbed boring. **SPT** jar or bag samples shall be taken for classification testing and verification soil identifications. **SPT** jar or bag samples shall be taken for classification testing and verification of field visual soil identification. Thin wall tube samples should be sent to the lab to conduct consolidation testing (for settlement analysis) and strength testing (for slope stability and foundation bearing capacity analysis). Field vane shear testing is also recommended to obtain in-place sheer strength of soft clays, silts, and well rotted peats. #### **Rock** ### **Ground Water** Continuous cores should be obtained in rock or shales using double or triple tube core barrels. Water level encountered during drilling, at completion of boring, and at 24 hours after completion of boring should be recorded on boring log. In structural foundation investigations, core a minimum of 10 feet (3m) into rock to insure it is bedrock and not a boulder. In low permeability soils such as silts and clays, a false indication of the water level may be obtained when water is used for drilling fluid and adequate time is not permitted after hole completion for the water level to stabilize (more than one week may be required). In such soils a plastic pipe water observation well shall be installed to allow monitoring of the water level over a period of time. Core samples should be sent to the lab for possible strength testing (unconfined compression) for foundation investigation. Artesian pressure and seepage zones, if encountered, should also be noted on the boring logs. Percent core recovery and **RQD** value should be determined in field or lab for each core run and recorded on boring log. The top foot or so of the annual space between water observation well pipes and boreable wall should be backfilled with grout, bentonite, or sand-cement mixture to prevent surface water inflow which can cause erroneous groundwater level readings.